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A conventional (non-density-weighted) averaging method is used to study variable- 
density turbulent flows, in particular, a helium-nitrogen mixing layer. A careful 
order-of-magnitude analysis is carried out, first in relative density fluctuations, and 
then in the ratio of cross-stream to streamwise lengthscales. In  this way it is shown 
that, to lowest order, in jets and shear layers, the turbulence is unafffected by the 
density fluctuations, and conventional models can be used. The non-uniform density 
distribution influences only the mean-continuity and mean-momentum equations. 
Calculations (using a new form for the scalar-dissipation equation based on relaxation 
to  an equilibrium timescale ratio) show good agreement with experiment. Calculation 
with a less truncated system indicates that neglected terms have little effect. We 
use a modified Patankar-Spalding method that overcomes numerical stability 
difficulties. 

1. Introduction 
Variable-density turbulent flows have been studied using various averaging 

schemes. To the second-order closure level, there are at least three schemes. The first 
is conventional averaging. Donaldson, Sullivan & Rosenbaum (1972), Janicka & 
Kollmann (1979), Janicka & Lumley (1981) use conventional averaging to study 
variable density flows with models that are developed in different ways. The second 
was originally proposed by Favre (1966, 1969) and is called density-weighted 
averaging or Favre averaging. Many authors (Kent & Bilger 1976; Borghi & Dutoya 
1978; Jones 1979; Libby 1977; Vandromme 1980) use this method to study 
variable-density turbulent flow with models that are essentially developed in 
constant-density turbulent flow. The third is the so-called mixed-weighted averaging 
used by Ha Minh, Launder & MacInnes (1981). 

Here we follow Janicka & Lumley’s (1981) idea to study the variable-density 
turbulent mixing layer, in which there are strong density fluctuations. The experi- 
mental studies of Rebollo (1973) and Konrad (1976) will provide an assessment of 
this model scheme. 

The full set of equations for the variable-density mixing layer will contain mean 
velocity, mean mass fraction, Reynolds stress, flux of mass-fraction fluctuation, 
turbulent energy, variance of mass-fraction fluctuation, dissipation of turbulent 
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energy and dissipation of variance of mass-fraction fluctuation. First, we carry out 
an expansion in relative density fluctuation, keeping lowest-order terms, justifying 
this on the basis of observed values of the r.m.s. density fluctuation. For all but the 
pressure correlations, it is possible at  this point to show that conventional models 
are, to first order, adequate. Using conventional pressure correlation models, these 
modelled equations provide our more complete set. 

We then proceed to an order-of-magnitude analysis of jets and shear layers, 
beginning from our more complete model. We find that the conventional pressure 
correlation model is indeed appropriate to lowest order, and that in fact to this order 
the turbulence is in local equilibrium and is unaffected by the density fluctuations, 
which are produced passively from the mean gradient. The density non-uniformity 
influences only the mean-continuity and mean-momentum equations. The local 
equilibrium results in algebraic Reynolds-stress and flux equations. This is our 
simplified set. The solutions of the more complete and the very simple sets of modelled 
equations are quite close, and both are in reasonable agreement with experimental 
data. In  the following sections we shall describe the basic equations, models, 
numerical methods and results. 

2. Basic equations 
We shall concentrate on variable-density flow in which the density fluctuations are 

caused only by mixing gases with different densities. In this case the density of the 
mixed gas is only a function of the mass fraction f ,  defined by 

1 
p=, f+ ,?  

where p is the density of mixed gas, and p1 and p2 are the densities of the two different 
gas species. Let us write the kinematic diffusivity of mixed gas as d .  We may assume 
that this diffusivity is approximately independent of mass fraction f (see Jeans 1954). 
Now for isothermal flow the diffusivity d and viscosity p will be considered aa 
constants in the flow field. The general equations governing instantaneous quantities 
are as follows: 

P, t + bud ,  k = 0. (2.4) 

Equation (2.2) is the conservation equation of mass fraction, (2.3) is the momentum 
equation and (2.4) is the continuity equation; gi stands for the gravity vector. 

For the conventional averaging method, we decompose all the instantaneous 
quantities into mean and fluctuating parts : 

p = (p )+p ‘ ,  f = F + f ’ ,  ui = U,+U;, p =  P+p’ .  (2.5) 
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Before we derive the equations for the various statistical quantities, let us look at 
the relation between density fluctuations and mass-fraction fluctuations which we 
shall need in the following sections. 

If we rewrite (2.1) as 
1 

we obtain 

1 
c f + e  =- 

P 

1 
= - [ 1 - + ( q2 + . . .] 

( P )  <P> ( P )  

where ( ) stands for averaging. To simplify the problem, we assume that p' is of order 
of its r.m.8. p", and p"/ (p)  is small compared with 1. In fact, we shall see that p" / (p )  
in the He/N mixing layer never rises above 0.45 and reaches that value only in a 
narrow zone. In  non-premixed flames (Chen k Lumley 1984) p"/(p)  is found to be 
no larger than 0.4, again reaching this value only in a narrow zone. Levels of 0.4 for 
p" / (p )  suggest maximum errors of 16% in relatively narrow regions, which is 
satisfactory for many purposes. It is fair to say that, generally speaking, relative 
density fluctuations of order 0.4 are rare, so that the model performance will generally 
be better than this. Certainly we can in this way arrive at an understanding of the 
physics. After neglecting higher-order terms in p"/ (p)  we obtain 

Jc = - 4 p )  f '+o(w) P" . 
(P)  

Equation (2.7) is a useful relation to form the correlation between density and other 
quantities. In  the derivation of all mean and second-moment equations, we shall also 
use the following approximation: l / p  = (l/(p)) (1 - p ' / ( ~ ) ) + O @ " / ( p ) ) ~ .  In a 
variable-density flow the divergence of velocity is not zero. We may obtain its mean 
and fluctuating pasts from (2.4), (2.1) and (2.2): 

' k , k  = d c ( ( P ) T k + ( P ' f : k ) ) , k ,  

uk, ' k = d c ( ( p ) f :  k + p'? k + p'f:  k - (p'f: k) ), k' 

In order to simplify these expressions we apply two types of order-of-magnitude 
analysis. One is related to (2.7); i.e. c(p)  f'  ( R p' / (p) )  is considered as a small 
quantity. The other is related to the assumption of high turbulent Reynolds number 
and Schmidt number, such that ( u ; , ~  f r5)/(u:* f : 5 ) , 5  x 4, where R, = u'l/v, 
3 d 2  = (q'), 1 = d 3 / ( e > ,  and ( q 2 )  and (E) are the turbulent kinetic energy and 
dissipation respectively. This kind of order-of-magnitude analysis will be applied in 
the derivation of various equations. Clearly if we only keep the terms of order c(p ) f '  
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and keep the assumption of high turbulent Reynolds/Schmidt number in mind 
during the averging process, then we shall obtain 

Now let us derive the equations for the following statistical quantities: mean 
velocity, mean mass fraction, Reynolds stress, flux of mass fraction, mass-fraction 
variance, dissipation of turbulent energy and dissipation of mass-fraction variance. 
Decomposing the quantities in (2.2), we have 

F t +f : t  + uk F k +u; F k+ ‘ k f :  k k 

d 
= dF k k + d f  : k k + - ( ( P ) ,  k? k + P : k f  : k +  ( P ) ,  k f  ’, k + Y  k P : k )  

( P )  
d 

+-z @’(P), k k+P’P: k f : k + F  kp’p: k ) .  
( P )  

On the right-hand side of the equation, the largest term in the last two groups is p: ,f: 
which is order (p” / (p ) )2 ,  so we neglect the other terms. The equation for F will be 

a? 
F t +  u k q k + ( u ; f : k >  = m ( p : k f : k )  

and the equation for f ’  

d 
f : t+u;< k +  ‘ k f  : k + U ; f : k - ( u ; f  :k> = df : k k + ( P ) ( P : r f  : k - (p :Kf  I>)* 

If we note that 

(‘;f : k >  (u;f  ‘ > , k + d c ( p ) ( f  : k f  : k >  and ( P : K f : k )  - c ( p > ’ < ( f : k f  :k)? 

then we obtain 
F t +  uk F k +  (u;f ’>, k = -2dc(p) (f : k f  : k > *  (2.10) 

The equation for f’ is used for deriving the second-moment equation, and the pure 
mean term does not contribute, so for simplicity we suppress these terms and write 

f :t+.; F k +  ‘ k f :  k + U k f  : k  = df : k k - d C ( P ) f  : k f :  k’ (2.11) 

From (2.3) we may write 

Ut , t+U; , t+  ui ui,j+u; qj+ uju;,j+u;u;,j 

1 
= -- (9 i +P:o  -c(Czf’ +P:rf’) + V ( U i , j  + uj, i+u;,j+u;, J,j 

( P )  

+ V C ( P ) f  ’(Uz,,+ uj,z+u;,,+u; 9 .  a )  j + h  

where v is p / ( p ) ,  p ’ / ( p )  x c ( p )  f ’, and the term &,, has been neglected. The same 
argument as in the mass-fraction equation will lead to  the following results : 

1 ui, t +  uj ui, j + <u;u;>,j = -<p> 

u;, t + u; ua, j + u* u;, j + u; u;, j 
(2.12) 
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Now we can use (2.11) and (2.13) to form the equations for the second moments, 
which are (f l a ) ,  (uif’), (uiu;). From (2.11) we may form 

In (2.15) and (2.16) we have intensively used the assumption of high turbulent 
Reynolds number and high Schmidt number. The terms v(u(, k u;, k )  and d ( f : k  f : k )  

are called the dissipation of turbulent energy and of vanance of mass-fraction 
fluctuation. They are denoted by (6) and ( e f )  respectively. As discussed, for example 
in Tennekes & Lumley (1972), the equations for these quantities (which can be 
obtained from (2.13) and (2.11) are not of much help; the production/destruction 
terms consist of small differences between large quantities, the latter written in 
dissipation range variables, but the differences being determined by energy- 
containing range variables. Essentially everything in the equation but the convection 
terms must be modelled. The results are 

(2.17) 

(2.18 a )  

where Y and Yf contain all the production and destruction effects. We shall try to 
model Y and !Pf in a similar way to Lumley (1978). 

Besides the above equations, we can easily obtain a continuity equation from 
(2.4) : 

(2.18b) 

( E ) ’  p, 
(€), t + uk(s>, k + (U;E’), k = -- 

q2 

( 6  >2 

(f ) ( € f ) ,  t + uk(Eff) ,  k + €;), k = -* Ivf, 

( P ) ,  t + ( ( p )  uk-c(p)z  <&f ’)I, k = 0. 
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From (2.18b) we see that in a two-dimensional statistically steady case it is 
convenient to introduce a mean stream function @, for example 

(2.25) 

Equations (2.19)-(2.25) are the general basic equations for variable-density flows 
(mixing fluids) on the assumptions of high turbulent Reynolds and Schmidt number 
and small ratio of p"/<p). The effects of variable density are represented by terms 
with the factor G. If we let G = 0, then the equations will reduce to constant-density 
flow with a passive scalar. It is interesting to note the appearance of the mean-pressure 
gradient in the varible-density terms of the second-moment equation. We may expect 
that the effects of the pressure gradient will be stronger in variable-density flow than 
in constant-density flow. These equations are evidently not closed; many terms must 
be modelled. There are basically four types of terms: 

(i) third moments, like (uiu;u;), (uiuif '),  ( ~ ; f ' ~ ) ;  
(ii) pressure correlations, like ( p : ,  u;), (p:i f ') ; 
(iii) more complicated terms, d( f If:, f : k ) ,  ( p : j  f '2), <P:,u; f '); 
(iv) the terms in the dissipation equation, ( u ~ E ' ) ,  (u ;~ ; ) ,  Y,  !Pf. 

where L( 1 = ( P ) (  ) , t + ( ( p )  ~ , - c ( P > 2 ( u ; f ' ) ) (  I,,. 
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For the terms of type (i) and (iii), we use a zeroth-order (constant-density) 
approximation of the third-moment equations to obtain expressions for the third 
moments and the more complicated terms. For the terms of type (ii), we shall follow 
the procedure for constant-density flow and use Poisson’s equation for the pressure 
fluctuation and realizability to propose several possible models. The model terms in 
the dissipation equations, (uis’),  (u;si), are taken from Lumley (1978). Y and P 
are formed in a new way based on the equilibrium value of the timescale ratio (the 
ratio of the mechanical timescale to the scalar timescale). 

3. Modelling 
3.1. Models for third moments and more complicated terns 

The zeroth-order approximation for the third moments is obtained by a perturbation 
expansion about a (Gaussian) equilibrium state in the homogeneous limit for a 
constant-density flow (Lumley 1978). The method is somewhat reminiscent of 
non-equilibrium thermodynamics of mixtures, with the various second-order quan- 
tities playing the role of the species. This approach is essentially unique in modelling, 
in being based on first principles, and does not introduce adjustable constants. 
Janicka & Lumley (1981) showed that for a variable-density flow, this basic approach 
is also satisfactory, and the influence of the variable density on the third-moment 
equations appears only at a higher-order level, ( p ” / ( ~ ) ) ~ .  Therefore, the models of 
the third moments for a constant-density flow can be used in a variable-density flow. 
Here is the list of models for the third moments (Lumley 1978): 

where 

q 2  qTD<U; u;> + 2(u; u;> &L; u;) 
<q2u;> = -3- 

<E> 4/3+ 10 9 

(3.4) 

(3.5) 

and /3, @, will be presented later. 
For the ‘more complicated’ terms of type (3), first we write the equations for the 

third moments making use of the results of the perturbation expansion to eliminate 
fourth cumulants and time derivatives but keeping pressure correlations and viscous 
terms in their primitive form. We need in particular ( f t S > ,   if'^) and (u;u;f‘). We 
keep only zeroth-order terms in p”/(p>, and assume high Reynolds and/or Schmidt 
number to omit all the terms that contain the diffusivity d and viscosity p, except 
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the term d( f ’f : f :,) in the equation of (f ‘3), which is (f ’E;) and should be modelled. 
We obtain: 

and these are the required terms. 

3.2. Models for (u‘B‘), (u’ef), Y and F 
The models for the dissipation equation are the weakest point of second-order 
modelling. Equations (2.17) and (2.18) are formally of the same form as for 
constant-density flow. As we discussed in $3.1, the effects of variable density on the 
transport terms are of order ( p ” / ~ ) ~ ,  and hence are negligible. We can thus expect 
to use the constant-density form for (uks) and (u;ef). For Y and F, we shall try 
a new form which causes the timescale ratio (the ratio of mechanical to scalar 
timescale) to relax toward an equilibrium value at a rate that differs depending on 
whether the timescale ratio is greater or less than the equilibrium value, and which 
depends on the distance from the equilibrium value. A version of this has been 
exercised in atmospheric calculations by P. Mansfield (private communication) 
with satisfactory results. 

Here we list these models: 

(u’ E) = 9 q 2  [ (u ;u~)+2(u~u~)(u;u; ) /q” ( (s)  
k 5 ( E )  4p+ lo 9 (3.9) 

where Yo = y+0.98 exp (-7) ~ [l-0.33 In (1  -5511)], 

Yl x 2.0-2.4 

(?-/re - 1)“ q = 2 - -  2- r ’+ b( -11)“ 
r 

(3.11) 

(3.12) 
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or 

and a = l ,  b = 3 ,  c = l ,  d = 1 0 ,  A = O . l ,  

3.3. Pressure j u c t m t i o n  
The standard procedure for modelling the correlations between pressure gradient and 
velocity or a scalar is first to study the behaviour of the pressure fluctuations. We 
may obtain the Poisson equation for the instantaneous pressure from (2.3) as follows: 

D 
-P, t8 = -%CU*, o,,,+g (ut, 0 + P ,  ‘6 (4 +PU,,,U,, i 

where D / D t  stands for ( ), +u,( ),,. In  a constant-density flow, the first three terms 
on the right-hand side of the equation will disappear. They represent the principle 
effects of variable density on the pressure. In the case of a mixture, we may write, 
from (2.11), (2.2) and (2.4), 

Substituting this into the pressure equation gives 

D D 
-P ,  ti = - W C ( P ! ,  t), r,, +dcpDT (Pf, t), 1 -CP% tE (%) + PUa,, 4 , 8 ,  

(1) (2) (3) (4) 

We are dealing here with instantaneous variables - mean plus fluctuation. To get 
a rough idea of orders of magnitude, consider a general laminar flow, and take 
ut,, x O(u/l) ,  f,* x O(Af / l )  and Du,/Dt x O(u2/Z), where I is the smallest of the 
lengthscales in the various directions. The relative order of magnitude of the various 
terms on the right-hand side of the equation will be 

(1) (2) (3) (4) 

Therefore, the first two terms can be made as small as we like by making the 
Reynolds/Schmidt number sufficiently high. The third term is of order cpAf, which 
is the main effect of variable density on the pressure. Note that this analysis is on 
a sound footing only for a mixing (non-exothermic) flow. With heat release, the terms 
in ut, can be of much larger order. Now if we decompose the instantaneous quantities 
into their mean and fluctuating parts (see (2.5)), we may write 

-p:** = 2 0 )  ui,,u;,i+<P)u,‘,,u;,,+O(c(P)f ’). 

In this equation the first two terms are identical with the constant-density case, and 
the remaining terms are of order c(p) f ’  (which represents the effects of variable 
density). Now let us estimate at what order of magnitude these first-order ( ~ ( p )  f ’) 
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terms affect the pressure correlations in (2.19)-(2.25). First, in the mean-velocity 
equation, these terms will appear as second-order terms (c(p) f ’f)2, because there is 
a factor of order c(p)  f ” in front of the pressure correlation. Secondly, in the 
second-moment equations, they will appear to first order c(p) f” .  However, in our 
gas mixing layer (thin-shear-layer flow), we shall see (in $4) that c(p)f” x O(l/L)i .  
If we discard terms of order (l /L)i  in the second-moment equations (as we shall), we 
may also neglect the effects of variable density on the pressure correlations. We shall 
consequently use more-or-less familiar constant-density forms for all the pressure 
correlations, and consistently neglect the divergence of velocity (which can be 
considered as a diffusivity term, see (2.9)). We shall give derivations in extemo only 
when we have somewhat elaborated the traditional models. We may now write 

-p:ii = 2(P) ui,*u;,r+(P>u;,*u;,t. (3.13) 

Because of the linearity of this equation, we may split it into two parts as follows : 

and write 

(3.14) 

(3.15) 

(3.16) 

The correlations containing pia, and pie ,  are called the rapid term, and the return 
term respectively. The total pressure correlation can be written in the following way : 

(P:iu;> = ( P i a , t u ; > + < P i e , g u ‘ ) ,  (3.17) 

@:if) = ( p i a , i f ’ ) + ( P i e , J ’ ) -  (3.18) 

3.4. Model of ( p : ,  u;) 

M e ,  t u;) 
We may re-write this term as follows: 

(Pie ,  i u;> = ( P i e  u;). i - (pie  u;. t>*  

The first term on right-hand side of this equation is called the pressure transport term. 
We model this in the same way as Lumley (1978), but correct an error made there. 
Lumley (1978) did not consider the most general linear expression ; if we add the term 

where C is an undetermined coefficient, rather than the fixed value of 0.2 which he 
obtained. We shall derive the corresponding scalar quantity in $3.5. 

Now let us consider the model of (p ie  u;, i ) .  This term is usually called ‘the return 
to isotropy’. The molecular term, v<u;, ,u;,k),  also plays a part in the return to 
isotropy. We model them together and define a tensor Gi, as follows: 

1 

P 
-@i j (E> = - ( p i e ( u ~ , ~ + u ; , i ) > - 2 v < u ~ , k U ; , k ) + % ( 8 )  (3.20) 

The arguments by Lumley (1978) lead to the following model for @: 

(3.21) 
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where t? is a function of the turbulent Reynolds number and invariants of b,, 

= 2+exp(-~)[~+Aln(l+B(-II+CIII))][~+3III+II], D 72 (3.22) 
Rp Rp 

I1 = - 9 i j  b,, 111 = gbt, bjk bkt, 
A = 80.1, B =  62.4, C =  2.3, D = 7.77. 

&:a, j u;) 

term. In the usual way, we may form from (3.14) 
This term, which contains the mean-velocity gradient, is usually called the rapid 

supposing (in the usual quasi-homogeneous approximation) that the scale of variation 
of the mean-density and mean-velocity gradient is large relative to the scale of the 
double correlation, permitting the former to be removed from the integral. 

Now if we define a tensor X as 

(3.23) 

(3.24) 

From (3.23), X h a  the following properties: 

( a )  X$, = X3, 
(b) X;; = <u;u;>, 

X$ = Xf;, 

(c) X$ x 0, 
where (c) is an approximation, since we are neglecting the divergence of the velocity 
fluctuations in the correlation. If we assume that X is a linear combination of b,, then 
these properties will lead to the classical model (Launder, Reece & Rodi 1975) 

where C is a constant, C = -0.166 in a constant-density flow. This model form does 
not satisfy the realizability consideration raised by Lumley (1978). Here we suggest 
a new form (see Shih 1984) which contains higher-order tensors in b,, and which 
satisfies realizability exactly : 

(3.26) 
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3.5. Model of ( p f i  f ‘) 

Now let us discuss the correlations between the pressure gradient and scalar. We shall 
follow the same procedure as we used for the correlations between pressure gradient 
and velocity. 

(Pie, if ‘) 
This term can be split into two parts: (p i ,  f ’), i- ( p i ,  f :i) .  First we discuss the 

‘pressure transport’ term, ( p i ,  f‘). As discussed in Lumley (1978), this term is, of 
course, not a transport term as usually defined, but appears to be required for 
consistency. Since a form for this term was not derived in Lumley (1978), we shall 
derive it here. From (3.15) we may form 

If we define the following tensor: 

(3.28) 

then (PLf ‘> = - (P>  y;j. (3.29) 

Equation (3.28) shows that this tensor has the following properties : 
(a) pj = ygq, yZq = yii PQ qP’ 
( b )  Pip = (UIU; f ’). 

If we assume that this tensor is a linear function of (uI u; f ‘) (written as ru), then 
we may form 

q q  = a1 s p q  r i j  + a 2  s i j  r p q +  a @ p i  r j q  + s p j  r i q  + aqi r j p  + sq j  r i p )  

+ a4 s$j spq rick + a5(sip sjq + siq s jp)  rkk,  

which already satisfies (a).  Condition (b )  and (3.29) will lead to the following form 
with an undetermined coefficient C which is a combination of a’s: 

(pief ’> = -C(P> (q‘Y’)* 

As discussed in Lumley (1978), this should have the same value as C in (3.19). 
The return term (p i ,  f ;) has been discussed by Shih & Lumley (1986)’ that is 

(3.30) (8) Gief :,> = - (P>  W u ; f  ‘>9“ 

(3.31) 



Second-order modelling of a variable-density mixing layer 105 

(Pi,. k f  I )  

This rapid term in the scalar flux equation can be shown to be 

M a ,  k f ’> = - 2(P)  Uj. t XijS (3.32) 

where the tensor X is defined by 

(3.33) 

Obviously, we shall obtain the following conditions from (3.33) : 
(a )  XLj = x ! k ,  

( b )  x;j = <U;f 7 ,  
( c )  xi, xo. 

Now if we assume that the tensor X is only a function of (u; f ‘) and b,,, than general 
form is 
xt - 

j k  - PI sjk(fui> +p2(s i j<fuk> + s t k ( f u j > )  + p S  b j k ( f u t )  

+ p ~ ( b t j ( f U k ) + ~ i k ( f u j ) ) + p ~ ( s $ j  bkp+6kt  bjp)(fup) B j k b t p ( f u p ) *  

which already satisfies condition (a) .  From conditions ( b ) ,  ( c )  and the realimbility 
condition suggested by Lumley (1978), we obtain a new form (also me Shih 1984): 

= !sjk(fut) -?dSik<fu5> s $ j ( f u k ) )  f kbjk(fuZ> 

-&(bik( fuj )  + bZj(fuk)) +!$jk b t p ( f @ p ) ’  (3.34) 

Note that the first two terms of this form have been used by most authors, but do 
not satisfy realizability. 

4. The simplified equations 
The flows considered here are almost parallel, two-dimensional flaws for whioh the 

boundary-layer approximation is applicable. For these flaws it i s  possible to simplify 
the equations for the second moments (say, Reynolds stress and sottlar flux) by 
neglecting small terms. To identify these terms, we must determine in what order 
the terms vanish as these flows become more and more parallel. We shall oonaentrats 
on mixing-layer flow (the shear layer). Other types of flows (jets, wakes and 
axisymmetric flows) can be analysed in the same way. For the mixing layer there 
are two velocity scales: Us for the cross-stream variation of the mean veloaity 
component in the 2-direction; u for the veloaity scale of the turbulence. We introduce 
temporarily a scale V, for the meam cross-stream veloaity oomponent. In addition, 
there are two lengthscales : L for the scale of ahange in the x-directioa : 1 for the saale 
of change in the y-direction. For the soalar quantities, we define E”, rtndf. a8 the soales 
of the mean mass fractions and the mass-fraction fluctuations respeatively, Aceording 
to the above, we may write a ( p )  U/ax = O((p)  U,/L) ,  a(p)  U/ay =p O((p )  UJZ), 
a ( p )  V/ay = O((p)  K/Z), (UW) = O ( U ~ ) ,  (u*) O(ug), (wg) = O(u*) etc, where O( ) 
stands for ‘order of magnitude’, 

Now let us consider the mean continuity equation: 
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Listed underneath (4.1) are the relative orders of magnitude of each term in (4.1). 
The third term is obviously vanishingly small compared with the fourth term in the 
limit as l/L+O; hence the fourth term is the only 'correction' term for density 
fluctuations. For the worst case, that the 'correction' term for density is as large as 
others in (4.1)' we must require 

(4.2) 

The mean continuity equation becomes 

(4.3) 

The equation for U reads 

= c(p)" ... - ( u f ) -  au - ( v f ) -  au - (u2)- aF - ( u v ) - ) .  CIF (4.5) 
ax a Y  ax aY 

Again the terms of a(p)(u2)/ax, (uf)aU/ax and (u2)aF/ax can be neglected 
compared to a(p) (uv)/ay,  ( v f )  aU/ay and (uv) aF/CIy, in the limit as l/L+O, and 
the following relations must hold if all the remaining terms are of the same order of 
magnitude : 

From (4.3) and (4.6) we obtain 

hence G ( P )  4 = O(1). 

The equation for U becomes 

(4.9) 

In a similar way we shall obtain the equation for F: 



a(vf) +(?I2)- a(uf '1. (4.12) 

Where '. . .' stands for the pressure and dissipation terms. The olrder of mclgnitude 
of each term in (4.12) is as follows: 

aF 
E . , . +c<p)Z [ - ( u v 2 )  -+ ( U V )  - 

aY aY a!! 
(6) (7) 

<P> U2 us 
1 '  

(1) = Obi), where A E 

(4) = O(A x l), 

(5 )  = Op(;y], 

(7) =.(A;). 

(6) = O [ A ( : y ] .  

Comparing the orders, we see that the most important variable-denaity term is of 
the same order a8 the cross-stream transport. If we discard tarma of O( 1/L)t and higher 
as l/L+O we obtain the crudest sort of local equilibrium amumption, and all terms 
in density fluctuation are discarded : 

... aU 
(v2)- = 

ay . 

In a similar way, we obtain for the equation for (u2) : 

for (uf): 

aF for (vf): <vz>ay = bf, 2). 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 



108 T.-H.  Shih, J .  L. Lumley and J .  Janicka 

FIGURE 1. Configuration of the constant-density mixing layer. 

u* 

Helium 

Nitrogen 

P1 

FIGURE 2. Configuration of the helium-nitrogen mixing layer. 

cv-YJldY 

FIGURE 3. Mean velocity in the constant-density mixing layer: ----, simplified equation; 
-, full equation; A, experiment (Bradshaw et al. 1964). 

Equations (4.13)-(4.17) are the simplified Reynolds-stress equations and scalar-flux 
equations, and they are now algebraic equations. We may consider them as an 
algebraic equation model for Reynolds stress and scalar flux. Note that, even with 
our worst-case assumption (that is, the ' correction ' terms for density are as large as 
other terms in the equations), taking into consideration our reasoning on the pressure 
terms, we are reduced to constant-density local equilibrium equations. That is, the 
turbulence is, to this order, a constant-density turbulence, unaware of the density 
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0.010 

<m> 

0.005 

0 
-0.1 -0.05 0 0.05 

0, -YJ/dY 

FIGURE 4. Reynolds stress in the constant-density mixing layer: ----, simplified equation; 
-, full equation; 0,  experiment (Bradshaw et al. 1964). 

CY-YJldY 

FIQUFLE 5. Turbulent-energy components in the constant-density mixing layer: ---- , simplified 
equation; -, full equation; 0, A, experiment (Bradshaw et al. 1964). 

fluctuations. The non-uniform density makes itself felt only through the continuity 
and mean-momentum equations. The density fluctuations are produced from the 
mean-density distribution like fluctuations in a passive scalar. Note that this drastic 
simplification of the physics would not work in combustion, where there is a 
physically distinct source of density fluctuations. Using this algebraic-equation 
model we solve the equations for U,  P, (f2), q2, ef and e (that is (2.19), (2.20), (2.21), 
(2.24) and (2.25)). 

From a physical point of view, the reason for this surprising result is the following : 
The most important way in which density fluctuations contribute to the Reynolds- 

stress equations is through the density fluctuation produced passively from the 
cross-stream mean-density gradient by the transverse fluctuating velocity. The 
parcel of fluid carrying this density anomaly makes a contribution to the fluctuations 
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0.16 
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0.08 

0.04 

0 
X 

FIQURE 6. Width of the constant-density mixing layer. Ay : evolution of the lateral distance between 
positions where the velocity is 90 and 10 % of the free-stream velocity. yN+I : evolution of the upper 
edge of computation domain. 
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(0 

0.8 

0.4 

0 
-0.10 -0.05 0 0.05 0.10 

Y l X  

RQURE 7. Mean mass fraction in the helium-nitrogen mixing layer: -, simplified equation; 
0 ,  experiment (Konrad 1976). 

of streamwise or cross-stream momentum proportional to the product of the density 
fluctuation and the velocity fluctuation. This is of second order, and of the same order 
as the cross-stream transport. 

To the extent that the turbulence budget can be regarded as local (dominated by 
production, dissipation and redistributions among the components) it can also be 
regarded as uninfluenced by density fluctuations, since these appear only because of 
transport across the gradient. 

5. Results 
We have solved both the full equations and the simplified equations for the mixing 

layer in constant-density and variable-density flows. The full forms of these 
equations, the models used, the initial conditions and the numerical method can be 
found in Shih, Lumley & Janika (1985). The experimental data for the constant- 
density mixing layer were taken from Bradshaw, Ferriss & Johnson (1964) which is 
considered to contain the best data (Rodi 1972). For the helium-nitrogen mixing 
layer, the data were provided by Rebollo (1973) and Konrad (1976). Konrad’s data 
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0.8 

0.4 - 

-0.10 - 0.05 0 0.05 0.10 

Y I X  

FIGURE 8. Variance of mass-fraction fluctuation in helium-nitrogen mixing layer : 
-, simplified equation; 0,  experiment (Konrad 1976). 
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FIGURE 9. Mean velocity in the helium-nitrogen mixing layer: -, simplified equation; 
0 ,  experiment (Konrad 1976). 

are considered to be better than those of Rebollo. In  our calculation, the mean 
pressure is constant. Other parameters are : 

helium : p = 0.641 kg/ms, U = 10.9 m/s, 

nitrogen : p = 4.49 kg/m3, U = 4.12 m/s. 

Figures 1 and 2 are flow configurations for the mixing layers. Figures 3 ,4  and 5 are 
the mean velocity, Reynolds stress and turbulent-energy components for the 
constant-density mixing layer. The dashed lines and solid lines are solutions for the 
simplified equations and the full equations respectively. These figures show that our 
calculations are in good agreement with experiment. If we define a spreading rate 
as dAy/dx, by being the lateral distance between positions where the velocity is 90 
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-0.10 -0.05 0 0.05 0.N 

Y l X  

FIGURE 10. Mean density in the helium-nitrogen mixing layer; -, simplified equation ; 
A, experiment (Rebollo 1973). 

" 
-0.10 -0.05 0 0.05 0.10 

Y l X  

FIGURE 11.  Turbulent-energy components in the helium-nitrogen mixing layer: 
-, simplified equation. 

and 10% of the free-stream velocity (Launder et al. 1975), our calculations give a 
spreading rate of 0.16 (figure 6), which is the same value as Launder's prediction 
(Launder et al. 1975) and quite close to  the measurements. Figures 7-12 are the 
calculations from the simplified equations for the variable-density mixing layer, 
which show that the solutions do approach self-preservation (we printed out the 
calculations at 2 = 1 m, 2 m, 3.5 m and 5 m). The experiments mainly provide data 
on mean mass fraction, variance of mass-fraction fluctuations, mean velocity and 
mean density. These are shown in figures 7-10. We see that our calculations do 
reproduce the behaviour of the helium-nitrogen mixing layer. The calculations agree 
quite well with experiments in the middle part of mixing layer. However, at both 
edges of the mixing layer, the calculations approach the free-stream values faster than 
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Y l X  
FIQURE 12. Stress and flux in the helium-nitrogen mixing layer: -, simplified equation. 

" -0.10 -0.05 0 0.05 0.10 

Y l X  

FIGURE 13. Comparison between simplified and full equations (mean maas fraction) : 
____ , simplified equation; -, full equation; 0 ,  experiment (Konrad 1976). 

the experiments. This may suggest that intermittency in variable-density flows is 
more important than in constant-density flows. Note that in figures 5 and 6, the 
definition of mass fraction (C) is different from F. The relations between (C) and 
F, (8) and (f2) are as follows: 

where r = (pa -pl)/pl and pl, pz are the densities of nitrogen and helium respectively. 
Figures 13-15 are the comparisons of the solutions of the full equations and the 
simplified equations. We see that there is relatively little difference between the two. 
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-0.10 -0.05 0 0.05 

Yrx  

FIGURE 14. Comparison between simplified and full equations (mean velocity) : ----, simplified 
equation; -, full equation; 0,  experiment (Konrad 1976). 

-0.10 -0.05 0 0.05 0.10 

Y / X  

FIGURE 15. Comparison between simplified and full equations (invariance of mass-fmtion 
fluctuations) : ---- , simplified equation; -, full equation; , experiment (Konrad 1976). 

Evidently the simplified equations are quite adequate in thin shear flows. That is 
certainly a computational convenience since these simplified equations are much 
easier and faster to solve than the full equations, and the relative lack of cross- 
coupling makes exploration of new models easier. 

However, the fact that the simplified model works so well has taught us something 
of much greater potential value. We have learned that to a relatively crude local 
equilibrium approximation, the turbulence is unaffected by density fluctuations; that 
the density non-uniformity influences only the mean momentum and continuity 
equations, and is mixed passively down its gradient by the turbulence. This is a sort 
of Boussinesq approximation for this kind of turbulence which will make the ultimate 
construction of a model for combustion much easier. 
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We have also learned that at least in these flows, conventional averaging is more 
than adequate, and that the modelling can be done as in constant-density flows. 

Finally, note that the asymmetry of the mean-density distribution as measured 
is well reproduced by these models, indicating that the entrainment of low-density 
and high-density fluid is not symmetric. It has been repeatedly stated that simple 
models of this type are not capable of reproducing this asymmetry; however, this 
is evidently not the case. It is also current folk wisdom that it is not possible to model 
a flow of this type, in which coherent structures are known to play a very significant 
role, with a model which does not take explicit account of them. This is evidently 
also not true. The point is that a model of this sort does not know what sort of motions 
are transporting properties; if the motions, coherent or incoherent, all scale in the 
same way, it lumps them together. 
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